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Abstract

Electroweak symmetry can be naturally broken by observed quark and gauge
�elds in various extra-dimensional con�gurations. No new fundamental �elds are
required below the quantum gravitational scale (� 10 { 100 TeV). We examine
schemes in which the QCD gauge group alone, in compact extra dimensions, forms
a composite Higgs doublet out of (t; b)L and a linear combination of the Kaluza-
Klein modes of tR. The e�ective theory at low energies is the Standard Model. The
top-quark mass is controlled by the number of active tR Kaluza-Klein modes below
the string scale, and is in agreement with experiment.
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1 Electroweak asymmetry and extra dimensions

There are two major experimental observations which are not explainable solely in terms

of the SU(3)C � SU(2)W �U(1)Y gauge interactions and the three generations of quarks

and leptons: the electroweak symmetry breaking and the existence of gravity. It is now

widely believed that a quantum theory of gravity necessitates a spacetime dimensionality

greater than four. In this paper we show that the extra spatial dimensions, compacti�ed

at the � TeV scale, also provide simple and natural mechanisms for electroweak symmetry

breaking without the introduction of explicit Higgs �elds.

We will argue that the Standard Model is the e�ective theory emerging, below the com-

pacti�cation scale, from a higher dimensional SU(3)C � SU(2)W � U(1)Y gauge theory

with three generations of quarks and leptons and no fundamental Higgs �eld. A composite

Higgs doublet arises naturally in the presence of certain strongly coupled four-quark oper-

ators. For concreteness, we will take these to involve typically the left-handed top-bottom

doublet ( L) and a vector-like quark [1]-[5], but we anticipate many possible variations of

this particular arrangement. These particular four-quark operators are always induced by

QCD in compact dimensions, via the exchange of the Kaluza-Klein (KK) excitations of

the gluons [6]. Hence, the KK-gluons are e�ective \colorons" [7] and their e�ects can be

quite large because the higher-dimensional QCD coupling constant increases above the

compacti�cation scale. The strength of these contact interactions depends on the ratio of

the compacti�cation scale, Mc, and the scale Ms of the underlying quantum gravitational

e�ects. For Mc in the TeV range [8, 9, 10], Ms has to be around 10 � 100 TeV such

that the quantum gravitational e�ects cut-o� the non-renormalizable higher-dimensional

gauge interactions. Hence, the measured weakness of the gravitational interactions has

to be explained by a modi�cation of gravity at short-distance, for instance as proposed in

refs. [11, 12, 13].

Indeed, the dependence of four-quark operator coe�cients on the Ms=Mc ratio allows

us to give a nice connection with string/M theory if one assumes that the gauge couplings

unify at the string scale [14]. Due to the power-law running of the gauge couplings in extra

dimensions [15], the value of the uni�ed higher-dimensional coupling, g4+�(Ms), and the

Ms=Mc ratio are determined almost exclusively by the number � of compact dimensions

accessible to the Standard Model gauge bosons. For � �> 2, g4+�(Ms) is of order one inMs

units, corresponding to a string coupling of order one. This is in accord with the argument

based on dilaton stability [16] that string theory is in the truly strong-coupling regime.
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Furthermore, the large value of g4+� implies that the strength of the four-quark operators

induced by KK-gluon modes is non-perturbative, and may indeed bind a composite Higgs.

The only remaining ingredient for a viable theory of dynamical electroweak symmetry

breaking is the above-mentioned vector-like quark. In four dimensions, a composite Higgs

doublet may be bound out of the  L and the right-handed top �eld, tR [17, 18]. However,

the Yukawa coupling of the Higgs doublet to its constituents is typically large, so that the

top quark mass is too large (unless the theory is �ne-tuned to nearly exact criticality, and

the scale of the new interactions is taken to the GUT scale; alternatively, the measured

top quark mass forces the VEV of this Higgs doublet to be smaller than the Standard

Model Higgs VEV, v=
p
2 where v � 246 GeV is the electroweak scale).

On the other hand, if a new vector-like fermion is introduced with the same quantum

numbers as tR, it can then become the appropriate constituent of the Higgs boson together

with  L. The physical top mass is given in this case by a smaller eigenvalue of a mass

matrix involving the vector-like and top quarks [1]. Therefore, such a seesaw mechanism

neatly accomodates both the measured top quark mass and a Higgs VEV of v=
p
2.

It is quite striking that the Kaluza-Klein modes of the tR have exactly the quantum

numbers of this requisite vector-like quark. A key point of this paper is that the role of the

vector-like quark can be naturally played by the tower of KK modes of the tR. Therefore,

compact extra dimensions appear to provide everything needed for a dynamical seesaw

model of electroweak symmetry breaking1. Remarkably, however, while the vector-like

excitations are required, the seesaw mechanism is no longer needed here, because the top

Yukawa coupling is automatically suppressed by the (square-root of) number of active KK

modes of the tR with masses below Ms. Moreover, for typical ratios of Ms to the mass

of the �rst quark KK excitation, the top Yukawa coupling computed to leading order in

1=Nc is between � 0:7 and � 1:4. Thus, the Standard Model value for the top Yukawa

coupling (� 1) is a natural consequence of our framework.

In Section 2 we �rst discuss chirality and anomaly cancellation in the case of one extra

dimension. In Section 3 we present a detailed model of electroweak symmetry breaking

valid below the quantum gravity scale which does not require any new �eld beyond the

SU(3)C�SU(2)W �U(1)Y gauge �elds and the three generations of fermions, in a higher

dimensional con�guration. We study the low energy e�ects of this model in Section 4.

Finally, our conclusions are summarized in Section 5.

1Other studies of electroweak symmetry breaking in extra dimensions without a fundamental Higgs
doublet can be found in [19].
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2 Chirality and anomaly cancellation on a thick brane

In order to present the properties of the KK excitations of the tR, we start with a gen-

eral discussion of fermions in �ve-dimensions. The tR may be the zero-mode of a �ve-

dimensional fermion only if the gluons and hypercharge gauge boson propagate in the

�fth dimension. Therefore the extra dimension has to be compact, with a radius below

� (3 TeV)�1 [9, 10, 14].

2.1 Chirality from boundary conditions

A constraint on the compacti�cation of the extra dimension comes from the requirement

that the tR is a chiral, two-component fermion. The Lorentz group in �ve dimensions

SO(4; 1) has only one spin-1/2 representation which turns out to be non-chiral. The

fermions have four components, and the set of gamma matrices is formed of the usual

four-dimensional ones, �, � = 0; 1; 2; 3, and of i5. Therefore, a chiral zero-mode of a

�ve-dimensional fermion may exist only if SO(4; 1) is broken. A simple way of breaking

SO(4; 1) while preserving the four-dimensional Lorentz group, SO(3; 1), is to impose

boundary conditions that distinguish the left- and right-handed components of the �ve-

dimensional fermion.

Consider the four-dimensional Minkowski spacetime, with coordinates x�, and one

additional transverse spatial dimension, with coordinate y and boundaries at y = 0 and

y = L. A four-component fermion �eld, �(x; y), is de�ned on this space as a solution

to the �ve-dimensional Dirac equation which obeys some conditions at y = 0; L. The

simplest chiral boundary conditions are given by

PL�(x; 0) = PL�(x; L) = 0 ;

@

@y
PR�(x; 0) =

@

@y
PR�(x; L) = 0 ; (2.1)

where PL;R = (1� 5)=2. These conditions lead to the quantization of momentum in the

y direction. A complete set of orthogonal functions on the [0; L] interval consistent with

the conditions on �L is given bys
2

L
sin

�
�jy

L

�
; j � 1 : (2.2)

All these functions cancel on the boundaries, so that they do not include a zero-mode on

the compact interval [0; L]. On the other hand, the boundary conditions for �R allow a
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complete set of orthogonal functions on [0; L],s
1

L
;

s
2

L
cos

�
�jy

L

�
; j � 1 ; (2.3)

which includes a zero-mode, identi�ed as the right-handed top quark in the weak eigen-

state basis, tR. As a result, the decomposition of � in KK modes is chiral:

�(x; y) =
1p
L

8<
:tR(x) +

p
2
X
j�1

�
PR�

j
R(x) cos

�
�jy

L

�
+ PL�

j
L(x) sin

�
�jy

L

��9=
; : (2.4)

Note that this construction is identical with the compacti�cation of the �fth dimension

on a S1=Z2 orbifold of radius L=�.

A consequence of these boundary conditions is that there is no fermion mass term in

the �ve-dimensional Lagrangian. Nevertheless, the Dirac equation, 
�@� + i5

@

@y

!
�(x; y) = 0 ; (2.5)

includes a 5 term so that it cannot be decomposed in separate equations for the left-

and right-handed fermions. It is straightforward to derive the fermion propagator for this

�ve-dimensional spacetime with the above boundary conditions:

h0j�(x0; y0)�(x; y) j0i =
Z d4k

(2�)4
eik

�(x�x0)�
2

L

X
j�0

"
cos

 
�jy0

L

!
PR + sin

 
�jy0

L

!
PL

#

� �k� + 5�j=L

k�k� � (�j=L)2

�
sin

�
�jy

L

�
PR + cos

�
�jy

L

�
PL

�
i

1 + �j0
(2.6)

We will use this propagator in section 3.2 to derive the Higgs potential.

2.2 Chiral Anomalies

Next we study what happens when the � fermion transforms under some gauge symmetry.

This is necessary in order to show that the model of electroweak symmetry breaking

presented in the next section is anomaly-free.

The �ve-dimensional Lorentz-invariant gauge theories have no chiral anomalies because

the fermion representation is vector-like. However, the boundary conditions considered

above prevent the existence of a �L zero-mode, which raises the question of anomalies.

The Ja;r� � i�aT r� current has an anomaly given by

DaJ
a;r
� =

i

24�2L
�����Tr

�
T r@�

�
A�@�A� +

1

2
A�A�A�

��
; (2.7)
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where A� = g5A
�;r0

T r0

is the gauge �eld, the trace is over the products of group generators

T r, and Da is the covariant derivative. The index a runs from 0 to 4, with @4 � @=@y.

Throughout this paper we use latin (greek) indices to denote the components of �ve (four)

dimensional vectors.

Naively, one may think that this anomaly spoils the gauge invariance. It turns out,

however, that the anomaly in this �ve-dimensional theory is more subtle. This is because

the action may include a Chern-Simons term on the [0; L] interval:

LCS(A) =
L� y

96�2L
�abcdeTr

�
FabFcdAe �

�
Fab � 2

5
AaAb

�
AcAdAe

�
; (2.8)

where F is the gauge �eld strength. In the presence of the Chern-Simons term, the gauge

current becomes the sum of the fermion current and the Chern-Simons current. As a

result, the divergence of the total gauge current cancels everywhere on the open interval

(0; L):

Da

�
Ja;r� + Ja;rCS

�
= 0 : (2.9)

Hence, the gauge theory with a Chern-Simons term is well de�ned (i.e., non-anomalous)

in the bulk of the �fth dimension. This is to be contrasted with the gauge anomaly in

four-dimensions, which cannot be canceled by any counterterm in the action.

The physical interpretation of anomaly cancellation in the bulk of our �ve-dimensional

theory is similar with that given in ref. [20] for the case of domain wall fermions in 2+1

dimensions. In the present case, the anomaly due to tR on the [0; L] interval produces

gauge charges which are collected by the Chern-Simons current and transported towards

the boundary. Therefore, in the bulk there is charge conservation. At the boundary,

though, the charges are lost, so that the �ve dimensional theory with only one zero-mode

fermion is indeed ill-behaved due to the anomaly. This can be seen by computing the

variation of the action under a gauge transformation:

�
Z
d4x

Z L

0
dy (i�aDa� + LCS) = iL

Z
d4xDaJ

a;r
� �r

����
y=0

; (2.10)

where �r is the gauge transformation parameter.

Therefore, there is need for other fermions such that the overall anomaly cancels, and

the �ve-dimensional theory reduces to a non-anomalous four-dimensional gauge theory

at scales below �=L. For simplicity we will assume that tR is the only fermion with KK

excitations below the string scale Ms. This is implemented in the e�ective �eld theory

belowMs by localizing all the Standard Model fermions with the exception of tR at certain
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positions in the �fth dimension. Evidently, the anomaly cancellation matches well in the

e�ective theory below the compacti�cation scale, where the only fermions present are the

four-dimensional three generations of quarks and leptons.

The microscopic implication of anomaly cancellation in this case is that the charges

which are driven by the Chern-Simons current (2.8) to the boundary are brought by

another Chern-Simons current to the location of the other third generation fermions where

they are absorbed by the corresponding four-dimensional anomalies. For example, a left-

handed fermion located at y = y0 and z = 0 requires a Chern-Simon term with a step

function shape,

�(y � y0)� 1

96�2
�abcdeTr

�
FabFcdAe �

�
Fab � 2

5
AaAb

�
AcAdAe

�
; (2.11)

to be added to LCS(A). As a result, the right-hand side of eq. (2.10) vanishes and the

theory is gauge invariant.

We emphasize that the �ve-dimensional gauge theory is non-renormalizable. The

gauge coupling has mass dimension (�1=2), and it blows up at some scale �Ms. There-

fore, any �ve-dimensional gauge theory should be seen only as an e�ective �eld theory

which at the scale Ms is replaced by a more fundamental framework, such as string or M

theory. The Chern-Simons terms discussed here are supposed to be produced within the

theory that introduces the physical cut-o� Ms.

Another possibility is that all third generation fermions are de�ned on the [0; L] interval

with chiral boundary conditions similar with those of �. In this case the overall Chern-

Simons current vanishes and the anomalies are canceled exactly as in the four-dimensional

Standard Model. However, this would imply that all third generation fermions have

KK excitations, which would complicate the analysis of the model presented in the next

section. To keep the discussion simple, we will not investigate this possibility here.

3 A model: right-handed top on a thick brane and

QCD in more dimensions

In this Section we show that the dynamics in extra dimensions allows us to construct a

model of dynamical electroweak symmetry breaking without the need for a fundamental

Higgs �eld.

Consider a (4 + �)-dimensional spacetime with the four-dimensional at spacetime

extended in the x�, � = 0; :::; 3 directions, and extra spatial dimensions with coordinates
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6

-�

z1;:::;��1

y0 L

Lz

y0

Figure 1: The pro�le of the compact space. The x-coordinates of the at three-dimensional
space are transverse to the plane of the page. The z1; :::; z��1 coordinates are depicted collectively
as one axis. The gluons propagate inside the rectangle, the � propagates along the y axis, on
the thick line, and the  L is located at the point marked on the y axis.

y and z1; :::; z��1. Only some of the observed �elds propagate in the extra dimensions.

The simplest con�guration is that where the gluons propagate in all these dimensions,

the tR is the zero mode of a fermion, �, which is �xed at z = 0 but propagates on the

[0; L] interval in the y dimension, and the  L = (t; b)L is �xed at z = 0 and y = y0. We

choose � �> 3 such that the e�ects of the gluons with momentum in the z dimensions are

non-perturbative when the Ms scale is su�ciently large2. We will assume that the gluons

propagate on intervals of size L and Lz in the y and z1; :::; z��1 dimensions, respectively,

with Lz < L. In Fig. 1 we sketch the extra-dimensional con�guration.

As mentioned in the previous section, it is convenient to assume that all other quarks

and the leptons are localized on four-dimensional slices of 4 + �-dimensional spacetime,

so that we do not have to worry about their KK modes. Furthermore, if the left- and

right-handed fermions (other than tR and  L) are split in the extra dimensions [21], then

they cannot acquire large masses. Note that this splitting does not produce the kind

of avor-changing neutral currents discussed in [10] provided the light fermions of same

chirality are located at the same places.

The U(1)Y gauge bosons have to propagate in the y dimension because � carries

hypercharge. The SU(2)W gauge bosons must propagate in the �fth dimension only

if di�erent weak-doublet fermions are localized at di�erent places. Note that if gauge

coupling uni�cation is imposed, then it is preferable to have the SU(2)W � U(1)Y gauge

bosons propagating in the same space as the gluons.

2Note that in the case of a single compact dimension, the four-quark operators induced by the tree
level exchange of an in�nite tower of gluon KK modes are �nite.
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3.1 The �ve-dimensional theory

After compactifying and integrating over the z dimensions, we �nd a tower of KK modes

of the gluons, which are grouped in levels of masses �
p
K=Lz with K a positive integer,

and degeneracies DK (DK = 0 for some values ofK, see Ref. [14]). These gluon KK modes

are �ve-dimensional �elds whose e�ects at energies below their masses are approximately

described by four-quark operators.

At scales between �=Lz and the string scale, Ms, the dynamics includes both light

gluon KK modes and four-quark operators induced by the heavier gluon KK modes.

Although each gluon KK mode is weakly coupled, the number of gluon KK modes may

be su�ciently large [6] such that the loop expansion breaks down. In order to analyze the

e�ects of this nonperturbative theory below some scale �, we approximate the dynamics of

the gluons with momentum in the z dimensions by a �ve-dimensional e�ective theory with

four-quark operators. The matching between the �ve-dimensional low-energy theory and

the (4 + �)-dimensional theory is likely to require the scale � of the four-quark operators

to be somewhere between �=Lz and Ms.

By imposing that the loop expansion parameter [14] becomes of order one at Ms, we

can estimate the separation between �=Lz and Ms. For � �> 3, the density of KK modes

is large and it turns out that Ms is only about twice �=Lz. Therefore, the uncertainty in

� is not worrisome.

The relevant piece of the �ve-dimensional Lagrangian density, involving the four-

dimensional  L(x
�) �eld and the �ve-dimensional �(x�; y) and massless gluon �elds is

given at the scale � by

L5(x
�; y) = �(y� y0)i L

�D� L+� (i
�D� � 5Dy)�� 1

2g25
Tr(F abFab)+LCS(G)+Lint :

(3.1)

F ab is the gluon �eld strength, LCS(G) is the Chern-Simons term for the gluon �eld [see

eqs. (2.8) and (2.11)], and D is the covariant derivative:

D� = @� + iG� ;

Dy =
@

@y
+ iGy ; (3.2)

withG� andGy being �ve-dimensional gluon �elds (the zero modes from the KK expansion

in the z directions) polarized in the x� and y directions, respectively. The �ve-dimensional

strong coupling constant, g5, has dimension (mass)�1=2.
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The Lint part of the L5 Lagrangian includes the four-quark operators induced by

gluon KK mode exchange. Although the SU(3)C interactions are avor universal, the

four-quark operators contained in Lint are not, because di�erent quark �elds are assumed

to be localized at di�erent positions in the extra dimensions. For example, all SU(2)W

singlet quark �elds other than tR and its excitations may be localized at z = zR > 0, and

the SU(2)W doublet quarks of the �rst two generations may be localized at z = zL > 0

with zL 6= zR. In this case the terms from Lint that could lead to large quark masses

in the low energy theory, namely the left-right current-current terms, are exponentially

suppressed unless they involve only  L and �.

The four-quark operators involving  L(x
�) and �(x�; y), obtained by integrating out

the �ve-dimensional gluon KK excitations, are given by

Lint(x; y) = � cg25
2�2

�h
�(y � y0)

�
 L

�T r L
�
+ (��T r�)

i2
+ (�5T

r�)2
�
; (3.3)

where c � 1 is a dimensionless coe�cient obtained by summing over the e�ects of the

gluon KK modes, and T r are SU(3)C generators.

These four-quark operators may be Fierz transformed, with the result

Lint(x; y) =
cg25
�2

�
�(y � y0)

�
 L�

�
(� L) +

5

16

�
(��)2 � 1

3
(�5�)

2
��

+ ::: ; (3.4)

where the ellipsis stand for vectorial and tensorial four-quark operators, which are irrele-

vant at low energies.

3.2 The �ve-dimensional e�ective potential

The operators shown in Lint provide attractive interactions which give rise to bound

states: a four-dimensional weak-doublet complex scalar, H(x�), and a �ve-dimensional

gauge singlet real scalar, '(x�; y). These composite scalars are propagating degrees of

freedom only below the compositeness scale. According to our approximation in which

the full KK mode dynamics is described at low energy by a �ve-dimensional theory with

four-quark operators, the compositeness scale is identi�ed with �.

At the compositeness scale the composite scalars are non-propagating, and the four-

quark operators may be replaced by Yukawa interactions between the scalars and their

constituents. The �rst two terms shown in (3.4) are equivalent with

Lc[�] = ��(y � y0)
�q

cg25 (� L)H + �2HyH
�
�
s
5

8
cg25 (��)'�

�2

2
'2 ; (3.5)

9



H '

Figure 2: Large-Nc contributions to the composite scalar self-energies. The vertical lines are
four dimensional �elds localized at y = y0, and the curved or slanted lines are �ve-dimensional
�elds. The external lines represent the H and ', while in the loops run the  L and � quarks.

as can be seen by integrating out H(x�) and '(x�; y). The last term in eq. (3.4) gives rise

to a �ve-dimensional pseudo-scalar. However, the coe�cient of this term is suppressed

by the factor of 1/3, such that the pseudo-scalar is not su�ciently deeply-bound to be

relevant at energies below the compositeness scale.

At scales � < �, the Yukawa interactions induce kinetic terms for the scalars:

Lc[�] = �(y � y0)
�
ZH(�)D

�HyD�H �
q
cg25

�
 L�

�
H
�

+Z'(�)@
a'@a'�

s
5

8
cg25 (��)'� V (�) : (3.6)

The wave function renormalization ZH can be determined by computing the self-energy

of the weak-doublet in the large-Nc limit (see Fig. 2):

ZH(�) = 2Nc
cg25
L

X
j�0

cos2(�jy0=L)

(1 + �j0)

Z d4k

(2�)4
�i

k�k� [k�k� � (�j=L)2]
: (3.7)

The integral is logarithmic divergent, and has to be cut-o� at �. The sum over the

momenta in the �fth dimension is also divergent, and is cut-o� at nKK � �L=�. The

integral has also an infrared cut-o� at �.

The wave function renormalization for the ' scalar has a more complicated form, due

to the two � propagators involved [see eq. (2.6)]. Keeping only the leading divergent

piece, we �nd

Z'(�) � 5

4
Nc
cg25
L

X
j�0

Z d4k

(2�)4
�i

[k�k� � (�j=L)2]2
: (3.8)

Note that the wave function renormalization for @'=@y is somewhat arbitrary (it can be

absorbed in the mass term for '), and does not have to be the same as Z'(�). In Lc[�]

we have chosen these two wave function renormalizations to be the same for convenience.
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Figure 3: Large-Nc contributions to the ~�H ; ~�0 and ~�' quartic couplings. The lines represent
�elds as explained in the caption of Fig. 2.

The scalar potential includes mass and quartic terms,

V (�) = �(y � y0)

"
~�H
2

�
HyH

�2
+

~�0L

2
HyH'2 + ~M2

HH
yH

#
+

~�'L

4!
'4 +

~M2
'

2
'2 ; (3.9)

as well as higher-dimensional terms which we will ignore. The mass parameters computed

in the large-Nc limit are given by

~M2
H(�) = �2 � 4Nc

cg25
L

X
j�0

cos2(�jy0=L)

1 + �j0

Z d4k

(2�)4
i

k�k� � (�j=L)2
;

~M2
'(�) � �2 � 5

2
Nc
cg25
L

X
j�0

Z d4k

(2�)4
i

k�k� � (�j=L)2
: (3.10)

In the expression for ~M2
' we have kept again only the leading divergent piece.

In the large-Nc limit, the leading contribution to the dimensionless quartic coupling,
~�H , is given by a quark loop with alternating � and  L propagators (Fig. 3). Therefore,

the result can be written as a double sum over the � momenta in the �fth dimension:

~�H(�) = 8Nc

 
cg25
L

!2 X
j1;2�0

fj1j2 cos
2
�
�j1y0
L

�
cos2

�
�j2y0
L

�
(3.11)

where we have de�ned

fj1j2 �
1

(1 + �j10) (1 + �j20)

Z d4k

(2�)4
�i

[k�k� � (�j1=L)2] [k�k� � (�j2=L)2]
: (3.12)

The coe�cients of the quartic terms involving ' have mass dimension �1. The factors of
L are introduced in eq. (3.9) such that the ~�0 and ~�' quartic couplings are dimensionless:

~�0(�) � 5

8
Nc

 
cg25
L

!2 X
j1;2;3�0

fj1j3
dj1j2dj3j2
(1 + �j20)

cos
�
�j1y0
L

�
cos

�
�j3y0
L

�
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~�'(�) � 25

256
Nc

 
cg25
L

!2 X
j1;2;3;4�0

fj1j2
dj1j2dj3j2dj3j4dj1j4
(1 + �j30) (1 + �j40)

: (3.13)

When all the ' �elds from the '4 interaction have momentum �=L in the y direction, we

obtain:

dj1j2 � �j2;j1+1 � �j2;j1�1 + �j2;1�j1 : (3.14)

To evaluate all these parameters, we assume that the number of the KK modes in the y

direction, nKK, is large enough so that we can approximate the sums over KK states by

integrals. The expressions obtained for the parameters are given in the Appendix.

The kinetic terms in Lc[�] [see eq. (3.6)] may be cannonically normalized by rede�ning

the scalar �elds: H ! H
p
ZH and ' ! '

q
Z'. In this case, the terms in the scalar po-

tential have the same form as in eq. (3.9), but with appropriately normalized coe�cients.

We denote the new parameters by dropping the tilde from the corresponding symbols

used in eq. (3.9). The squared-masses are given by

M2
H =

~M2
H

ZH
� 2�2

F1(y0)

"
4�2

nKKNccg2s
� F3(y0)

#

M2
' =

~M2
'

Z'
� 2�2

F2

 
32�2

5nKKNccg2s
� F4

!
(3.15)

We have used here the four-dimensional SU(3)C gauge coupling, gs, obtained in terms of

the �ve-dimensional coupling by integrating over the y dimension:

gs =
g5p
L
: (3.16)

The dependence of M2
H on the position y0 of the  L doublet is encoded in the F1;3(y0)

functions, which are symmetrical under the y0 ! L�y0 reection. F1(y0) and F3(y0) have

values of order one, with maxima on the boundary and minima at y = L=2. F2 and F4

are constant functions on the [0; L] interval because the ' mass is induced by interactions

which conserve momentum in the y dimension. These functions are given in terms of

divergent sums and integrals and depend on the cut-o� procedure. In the Appendix we

estimate them in the continuum limit with a speci�c cut-o�.

Similarly, the quartic couplings may be written as follows:

�H =
~�H
Z2
H

� 32�2F5(y0)

Nc [F1(y0)]
2 ;
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�0 =
~�'

ZHZ'
� �'

F6(y0)

F1(y0)
;

�' =
~�'
Z2
'

� 16�2

nKKNcF2
: (3.17)

Like the other F -functions written in the Appendix, F5;6(y0) � 1. Note that �H is

enhanced by an nKK factor compared with the other quartic couplings.

4 Four-dimensional phenomenology

The squared-mass parameters from the �ve-dimensional potential may turn negative if

the four-quark operators induced by gluon KK modes are strong enough. Therefore, the

four-dimensional �eld, H, and the �ve-dimensional real scalar, ', may acquire VEVs. The

composite weak-doublet H may be identi�ed with the Standard Model Higgs doublet. In

this Section we discuss the scalar spectrum and its phenomenological implications, and

we estimate the top quark mass.

4.1 Higgs boson mass

First, we consider the case in which  L is located at the boundary (y0 = 0). An inspection

of the squared-masses computed in the large-Nc limit [see eq. (3.15)] reveals that onlyM2
H

should become negative because the coupling in the � H channel is stronger than the

coupling in the ��' channel. In addition, the four-dimensional quartic coupling involving

bothH and ' vanishes in this case because the ' has a zero wave function on the boundary.

This implies that there is no mixing between H and '. Therefore, the ' has no e�ect on

the Higgs potential in this case. The H acquires a VEV while the KK modes of ' have

masses above the compacti�cation scale.

The e�ective theory below the compacti�cation scale is given by the Standard Model.

The compositeness of the Higgs doublet is not manifest at low-energy. However, as a

remnant of the strong dynamics that binds the Higgs, the quartic Higgs coupling is large,

�H � 1. The Higgs boson massMh0 , given at tree level by v
q
�H(v), appears to be above

1 TeV. The tree level estimate, though, should not be taken too seriously due to the large

�H . Because the theory that gives rise to the composite Higgs boson is unitary (above the

Ms scale, the unitarity should be enforced by quantum gravitational e�ects), the Higgs

mass is below the bound imposed by the unitarity of the WW scattering cross section

13



in the Standard Model. Once the non-perturbative corrections to Mh0 are included, we

expect Mh0 � O(1=2) TeV. Generically, when the  L is at y0 = 0, the Higgs boson is a

broad resonance.

Note that such a heavy Higgs boson is perfectly compatible with the electroweak

precision data. The often quoted upper bound on the Higgs boson based on the �t to the

electroweak data is valid only if there are no �elds or interactions beyond the Standard

Model [22]. In our case, however, there are KK excitations of the Standard Model gauge

bosons and tR, with masses in the TeV range. In their presence, a heavier Higgs boson is

not only allowed, but potentially preferred by the �t to the data. This has been shown

in the context of extra dimensions in ref. [23]. Speci�cally, the shift in the electroweak

observables due to the mixing of the W and Z with their KK excitations reproduces that

due to a light Higgs boson (when the Higgs is trapped on a 3+1-dimensional wall, like in

our case). Furthermore, when a vector-like quark identical with our KK modes of tR is

added to the Standard Model, the �t to the electroweak data yields a heavy Higgs for a

vector-like quark mass around 5 TeV [4]. Of course, when the vector-like quark is much

heavier, or equivalently the compacti�cation scale in our model is increased, one recovers

the Standard Model in the decoupling limit. Therefore, the y0 = 0 case is consistent with

the electroweak precision data only if the compacti�cation scale is not above O(10 TeV).
In the other case, where the  L fermion doublet is located in the middle of the interval

occupied by �, i.e. y0 � L=2, both H and ' may develop VEVs. (Note that eqs. (3.15)

imply that for F3(y0) � 5F4=8 both M2
H and M2

' turn negative at some particular value

of nKK cg
2
s .) Since the Higgs VEV is below the compacti�cation scale, it is appropriate

to integrate �rst over the �fth dimension, and only afterwards to minimize the potential.

The �ve-dimensional real scalar decomposes in a tower of KK modes

'(x�; y) =

s
2

L

X
j�1

'j(x
�) sin

�
�jy

L

�
: (4.1)

It is likely that only one or the �rst few modes of ' are light enough to have a signi�cant

mixing with the H.

For simplicity, we consider that the Higgs �eld mixes with one ' mode. The four-

dimensional potential may be obtained readily from eq. (3.9):

V4 =
�H
2

�
HyH

�2
+�0(y0) sin

2
�
�y0
L

�
HyH'2

1+
�'
16
'4
1+M

2
HH

yH+
1

2

 
M2

' +
�2

L2

!
'2
1 : (4.2)

After the scalar potential is minimized and the scalar �elds shifted, we �nd the following
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mass terms for the two light neutral degrees of freedom:

1

2
(h; �)

0
B@ �Hv

2 2�0(y0)vu sin
2
�
�y0
L

�
2�0(y0)vu sin

2
�
�y0
L

�
1
2
�'u

2

1
CA
0
@ h

�

1
A ; (4.3)

where v � 246 GeV and u is the '1 VEV.

In the limit �Hv
2 � �'u

2, the mixing of h and � decreases the Higgs boson mass:

M2
h0 � �Hv

2

"
1� 8[�0(y0)]

2

�H�'
sin4

�
�y0
L

�#
(4.4)

For y0 = L=2, theMh0 decreases by (100=nKK)%. This value is derived using the �H given

in eq. (3.17). As argued before, we expect that the quantum corrections actually drive �H

smaller, which would lead to an enhancement of the change inMh0 due to mixing. If more

' modes participate in the mixing, the decrease in Mh0 becomes even more signi�cant.

Perhaps the Higgs boson may be driven close to the current LEP limit. Unfortunately, it

is hard to study the scalar spectrum in general, with all KK modes included, especially

given that the parameters of the full e�ective potential are not accurately known.

In the other limit, where �Hv
2 � �'u

2, the h� � mixing may be ignored. The Higgs

boson remains heavy, but the physical �0 scalar could be very light. Its mass,

M0
� � u

s
�'
2
; (4.5)

is not constrained by the consistency of the model. The experimental lower bounds on a

neutral scalar which couples only to the top quark and the Higgs boson are quite weak [5].

It is therefore possible that the Higgs boson decays into �0 pairs, giving rise to unusual

signals at future collider experiments [24].

4.2 Top quark mass prediction

We can now predict the top-quark mass as a function of the number of KK modes and

the position y0 of the  L doublet. The fermion couplings to the composite scalars are

given by eq. (3.6). Upon normalization of the scalar kinetic terms and integration over

the y dimension, the Yukawa couplings become:

��t
nKKX
j=1

 
2

1 + �j0

!1=2
cos
�
�jy0
L

�
�jR LH

���
nKKX

j1;2;3=1

(�j3;j1+j2 � �j3;j1�j2 + �j3;j2�j1)�
j1
L �

j2
R'j3 + h:c: (4.6)
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Note that the Yukawa couplings of the Higgs doublet depend on the position in the �fth

dimension. The zero-mode of �, namely tR, has a Yukawa coupling to H given by

�t =
2
p
2�q

NcnKKF1(y0)
: (4.7)

The Yukawa couplings of the ' KK modes are position-independent due to momentum

conservation at the ��� vertex:

�� =
2�p

NcnKKF2

: (4.8)

The fermion masses for the tL component of  L and the KK modes of � form a

(nKK + 1)� (nKK + 1) matrix. There are two contributions to the elements of this mass

matrix. First, the Yukawa interactions give contributions determined by replacing the

H and 'j scalars with their VEVs in eq. (4.6). Second, the kinetic term of the �ve-

dimensional � �eld yields the usual KK mass terms:

nKKX
j=1

�j

L
�jL�

j
R : (4.9)

In the case where y0 = 0, the fermion mass matrix is easy to write:

�
tL ; �

1
L ; �

2
L ; :::

�
0
BBBBBBBBB@

�tvp
2

�tv �tv :::

0 �
L 0 :::

0 0 2�
L :::

::: ::: ::: :::

1
CCCCCCCCCA

0
BBBBBBBB@

tR

�1R

�2R;

:::

1
CCCCCCCCA
+ h:c: (4.10)

The top-quark mass (in the limit where we ignore the small mixing of the top with the

charm and up) is given by the lowest eigenvalue of the above mass matrix. It is amusing

that this matrix has the same form as the one for neutrino masses given in ref. [25]. Note

that our assumption that the KK-gluons in the z dimensions may be integrated out below

the cut-o� scale � (see Section 3) is legitimate provided �� �=L. Thus, to be consistent

we must impose nKK �> 10. Expanding in (vL=�)2 � 1, and taking nKK � 1, we �nd

mt � �tvp
2

�
1� 3

2
(�tvL)

2
�
: (4.11)

For L �< 1 TeV�1, the second term gives a small correction ( �< 1=nKK) to mt. Therefore,

the top mass is predicted in terms of nKK:

mt � 600 GeVp
nKK

: (4.12)
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The measured top mass can be used to determine the number of top KK modes:

nKK � 12: (4.13)

The number of top KK modes is related to the cut-o� scale � � nKK�=L, which is of the

order of the string scale Ms. If the �rst KK modes have a mass of a few TeV, then the

above prediction determines the scale of quantum gravity Ms � 30 TeV.

Furthermore, given that a cut-o� scale signi�cantly above � 50 TeV would require

excessive �ne-tuning (we assume that the theory is not supersymmetric below the string

scale), we �nd a naturalness upper bound nKK �< 20. Therefore, instead of using the

measured top mass to determine the number of KK modes, we may reverse the argument

and determine the typical values of the top mass in our model. For 10 �< nKK �< 20, we

�nd a range, 130 GeV �< mt �< 190 GeV, which within the theoretical uncertainties is

in agreement with the measured value.

When the  L is placed in the middle of the thick brane occupied by �, i.e. y0 � L=2,

some of the ' KK modes may acquire VEVs, as discussed in section 4.1. Therefore,

the fermion mass matrix becomes more complicated to analyze. If only the �rst ' KK

mode has a non-zero VEV, u, and u � �=L, then the top mass may be computed as

in the y0 = 0 case. The only notable di�erence is that mt is enhanced by a factor ofq
F1(0)=F1(y0). This factor reaches its maximum of

p
2 at y0 = L=2. It appears that the

upper end of the interval for nKK is preferred in this case.

In the more general case, where the VEVs of some 'j are comparable with the com-

pacti�cation scale, one could imagine that the preferred value of the string scale is lower,

Ms � 10 TeV. In such a situation our estimates would no longer be reliable, but the

qualitative picture of a composite Higgs doublet bound out of  L and a tower of tR KK

modes might remain valid.

Finally, we emphasize that the masses of the light quark and leptons may easily be

accommodated in our scenario. For example, certain four-quark operators presumed to

be generated at the string scale with coe�cients of order one in Ms units, give rise in the

low-energy e�ective theory to the Standard Model Yukawa couplings [5].

5 Conclusions

Electroweak symmetry breaking remains the foremost problem facing elementary particle

physics at this moment. We expect to come to understand it in scienti�c detail in the
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next decade with the Tevatron and the LHC.

We �nd it remarkable that the ingredients needed for a dynamical explanation of the

origin of the electroweak scale, which we often have previously invoked in model building

attempts (e.g., topcolor, vector-like fermions, strong coupling Nambu{Jona-Lasinio dy-

namics, etc.), are seemingly presented automatically in theories with extra-dimensions at

the � TeV scale.

In this paper we have explicitly constructed a \demo{model" of the dynamics in which

the only fundamental �elds below the string scale are the SU(3)C�SU(2)W�U(1)Y gauge

bosons and the three generations of quarks and leptons, living in a higher-dimensional

compact space.

Strong dynamics comes from the existing QCD gauge group, which has a large coupling

strength above the compacti�cation scale, due to the large number of KK-modes. The

KK-mode gluons act like degenerate octets of colorons which, via exchange, give rise to

four-fermion operators. Thus follows an NJL approximation to the dynamics induced by

these operators.

We �nd that various attractive channels lead to the formation of scalar bound-states.

The Higgs doublet channel corresponds to �� L where � is the right-handed top quark �eld

which we take to live in the bulk. While � has a chiral zero-mode by construction, which

is the tR, the Higgs doublet emerges as a bound-state involving a linear combination of

the active KK-modes inherent in �. In the e�ective theory the large number of active

KK-modes, nKK, controls the dynamics, and naturally leads to a tachyonic mass term

for the Higgs at low energies, and thus electroweak symmetry breaking. We also expect

various gauge-singlet composite bosons to form in channels such as ���, which somewhat

complicate the discussion of the low energy spectroscopy. A low mass Higgs boson may

emerge through mixing between the primary composite Higgs and the extra composite

singlets.

Our model is largely intended to illustrate what can happen in the extra-dimensional

theories. It is hardly unique. The only selection criterion seems to be the assignment

of Standard Model �elds to the world-brane or into the bulk, in various dimensional

con�gurations. We believe that, once the brane/bulk �eld assignments are made in this

manner, much of the dynamics we describe is forced to happen. New strong dynamics is

therefore natural and expected to occur in these theories. The experimental con�rmation

of a strongly interacting Higgs sector beyond the Standard Model would, though not

\imply", nonetheless lend support to the notion of extra dimensions at the TeV scale.
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Appendix: e�ective potential parameters

In this Appendix we give the formulae for the parameters of the low-energy e�ective

Lagrangian in the continuous approximation by replacing sums of the KK states with the

momentum integrals in the �fth direction.

Cutting o� the integrals at � and replacing �L=� by nKK, we �nd the following wave

function renormalizations at low-energy (� L�1)

ZH � nKK
Nccg

2
5

16�2L
2 F1(y0) ;

Z' � nKK
Nccg

2
5

16�2L

5

4
F2 : (A.1)

Likewise, we �nd the parameters from the �ve-dimensional e�ective potential (see section

3.2):

~M2
H � �2

"
1� nKK

Nccg
2
5

16�2L
4F3(y0)

#
;

~M2
' � �2

"
1� nKK

Nccg
2
5

16�2L

5

2
F4

#
;

~�H � n2KK
Nc

16�2

 
cg25
L

!2
8 F5(y0) ;

~�0 � nKK
Nc

16�2

 
cg25
L

!2
5

2
F6(y0) ;

~�' � nKK
Nc

16�2

 
cg25
L

!2
25

16
F2 ; (A.2)

where the F -functions are de�ned by

F1(y0) =
Z 1

0
p2dp2

Z 1

0
dq cos2(q�y0)

1

p2(p2 + q2)
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F2 =
Z 1

0
p2dp2

Z 1

0
dq

1

(p2 + q2)2

F3(y0) =
Z 1

0
p2dp2

Z 1

0
dq cos2(q�y0)

1

p2 + q2

F4 =
Z 1

0
p2dp2

Z 1

0
dq

1

p2 + q2

F5(y0) =
Z 1

0
p2dp2

Z 1

0
dq cos2(q�y0)

Z 1

0
dq0 cos2(q0�y0)

1

(p2 + q2)(p2 + q02)

F6(y0) =
Z 1

0
p2dp2

Z 1

0
dq cos2(q�y0)

1

(p2 + q2)2
: (A.3)

For  L localized at the boundary, we have

F1(0) =
�

2
+ ln 2 � 2:26 ;

F6(0) = F2 =
�

4
+ ln 2 � 1:48 ;

F3(0) = F4 =
1

3
+
�

6
� 1

3
ln 2 � 0:63 ;

F5(0) � 2:71 : (A.4)

If  L is localized in the middle of the [0; L] interval and �y0 � 1, the cos2(q�y0) weigth

factor averages to 1=2, and therefore

F1;3;6 (y0 � L=2) � 1

2
F1;3;6(0) ;

F5 (y0 � L=2) � 1

4
F5(0) : (A.5)
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